JOURNAL OF APPLIED POLYMER SCIENCE VOL. 17, PP. 605-618 (1973)

A Model for Gel Drying

Y. T. SHAH and J. H. PORTER,* Department of Chemical and Petroleum
Engineering, Unwversity of Pittsburgh, Pittsburgh, Pennsylvania 15213

Synopsis

A theoretical model for drying of a thin gel film is presented. The model is based upon
the premise that as solvent is removed from any portion of a gel structure which is per-
meable by the solvent, the structure shrinks locally to fill the voids left by the solvent.
The diffusion coefficient of solvent through the gel film is assumed to be an exponential
function of concentration and temperature. The governing equations for the model in-
dicate that for nonisothermal drying, the results of drying and shrinkage rates are func-
tions of 13 independent dimensionless system variables. These results are obtained with
the help of a computer solution of the proposed model. The computer results indicate
that, except under extreme temperature conditions, the drying and shrinkage rates are
most influenced by dimensionless groups M, P, and P, defined by eq. (9) of the paper.
Furthermore, the drying and shrinkage rates are essentially independent of groups M and
P for the values of M and P greater than approximately 100 and 10, respectively. The
effect of variable solvent diffusivity on approximate time to achieve the steady-state dry-
‘ing and shrinkage rates is approximately handled by defining a dimensionless time variable
7 in terms of average solvent diffusivity. Finally, some experimental data on drying and
shrinkage rates of isothermal drying of lyphogel film under natural convection condition
are obtained. These data are found to be in qualitative agreement with similar com-
puter predictions by the proposed model.

INTRODUCTION

It is a commonly observed phenomenon that evaporation of a solvent
from a gel structure causes a considerable shrinkage in the gel. This
shrinkage either causes loss in solvent permeation characteristics of the gel
or it makes the gel brittle and sometimes creates fractures in it. From a
practical standpoint, both of these phenomena are undesirable. A theoret~
ical model which could predict the drying and shrinkage rates of a gel struc-
ture under a wide variety of drying conditions is therefore needed.

The present paper describes a theoretical model for drying of a gel struc-
ture. Even though the model is developed mainly for a thin film geometry
such as the one illustrated by Figure 1, a very similar model can be easily
obtained for other shapes of gel such as an infinite eylinder, etc. The pre-
dictions of the model are tested against experimental data on isothermal
drying of lyphogel film. The model should be applicable to the processing
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of all materials which shrink and either rupture or loose their physical prop-
erties during drying.

THEORETICAL

The theoretical model developed here is based upon the premise that as
solvent is removed from any portion of a gel structure which is premeable by
the solvent, the structure shrinks locally to fill the voids left by the solvent.
Therefore, any concentration gradients of solvent in the gel will create dif-
ferences in local shrinkage, which in turn cause the loss in physical proper-
ties of the gel and the development of local stresses within the gel structure.
If these stresses exceed the yield stress of the gel, it ruptures. The gel and
solvent can be assumed to behave as a regular solution.

Consider a thin film of gel (very long in the other two directions) depicted
in Figure 1, with initial solvent content X, (Ib,, solvent/lb,, of solvent-free
gel), temperature Ty, and thickness Ly, suddenly immersed in a gas stream
at temperature T and solvent partial pressure Ps. At some time ¢ after
immersion, the gel has assumed a transverse concentration and tempera-
ture profile governed by the rates of mass and heat transfer at the surface
and within the structure. In addition, the gel thickness has been reduced
because of shrinkage due to solvent loss. If one assumes a basis of one unit
mass of solvent-free gel, the local density of the structure is given by

up = 1+ X[ £+ X0

Py Ps

m

where p, and p, are solvent-frece gel density and solvent density, respec-
tively. The rate of mass transfer of solvent from the surface, W, is given
by

v [oen(ine e e/ D)3

cfruof[ + 93] <o

KEX@HPJ(LY)

= MK [1 X(y,o] “1 @
Ps ~+ I

Py Ps

where the vapor pressure of the solvent at the surface, P, is

MNTLyt) — To)]
RT,T(L)

P (Lt) = Pyexp [ (3)

In eq. (2), D is the diffusion coeffictent of solvent through gel at zero solvent
concentration; My is the molecular weight of the solvent; K4 is the gas-
phase mass transfer coefficient; K is Henry’s law constant; Pg is the partial
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Fig. 1. Schematic of a gel drying process.

pressure of solvent in the bulk gas phase, and v, and v, are the coefficients
which take account of concentration and temperature dependence of
solvent diffusivity. In eq. (3), Py is the vapor pressure at initial tempera-
ture To; N is the heat of vaporization; and R is the universal gas constant.
X, T, and L in eqs. (2) and (3) are the time-dependent local solvent concen-
tration, the temperature, and the thickness of gel, respectively; and y in
eq. (2) is the distance from the inert support (see Fig. 1). Equation (2) as-
sumes that diffusivity is an exponential function of concentration and the
temperature.!:?

The assumption that the solvent pressure at the surface of the gel, Py,
obeys Henry’s law?® is made because the gel has attraction for the solvent so
that the actual vapor pressure is the pure component vapor pressure less the
pressure due to the attractive forces between the gel and the solvent. Thus,

PV = Ps(L’t) - Pa' (4)

Since the adsorption pressure P, is proportional to the fraction of gel surface
that is free of solvent and to the vapor pressure of the solvent, one may write

Pa = (1 - fa)Ps(L!t) (5)
where the fugacity f, is given by

KX
fo = Kf, = ﬁ (6)
Ps | — —+ —
Py Ps
Hence,
Py = Py(Lf) — Po = S @

1 X
Ps I:— + _]
Py Ps
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in which f, is the fugacity in the vapor phase.? The internal rate of mass
transfer by diffusion is governed by the equation

2 Delmtr(T~To)X/(1/pg+X/ps)] 3 X — _b_ X .
o a) 1 X ot 1 X
y Gl
Py Ps Py Ps

®)

In general, the temperature distribution within the gel will be funetions
of both distance y and time . However, since the model is developed here
primarily for a thin film of gel, it is assumed that, at any given time, the
temperature of the entire gel structure is uniform with distance. Thus, in-
tegral heat balance on gel drying will give

he(To = T) + WO+ CorTo = 1) = 2 [ Cpume puT] ©)

where

~ Lo X 1
L(t) Cpavg = j;) {(m) CSL + (m)CG}dy (10)

and
70
L) pave = fo pdy. a1

In the above equations, k¢ is the gas-phase heat transfer coefficient, and C,
Csv, and Cg;, are temperature-independent specific heats of solvent-free gel,
solvent vapor, and solvent liquid, respectively.

The shrinkage is given by a material balance on the solvent-free gel.
Thus,

L) [,1_ ' ._0]
Py - Ps
Lo = f _=Po _Pe

jass

Pg Ps

dy. (12)

Finally, it is assumed that there is no mass transfer across the interface of
gel and the porous support (or substrate).
Thus,

=t
Py Ps

0 X(y,t) _ _
5?; {—C—@j} = 0, aty = 0 (13)
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Dimensionless Form of Equations

Defining the parameters

X(yrt) C(y’t) TG — T(t) KGLOMSPO
Clyt) = =—=—————=; ¢y = -9 = . = s
(y’ ) [l + X(y,t)], Co b 0 TG —_ To b M DC() »
Pg Ps
Mg KC, A — Te
E=P="LH=-— " . T-__"¢__
RGTO Ps CSV(TG - To) (TG - To)
P = Bq o = _ Pgps e = Ps _ DCSLCO'
y 61 = T N = 4 = T
P, (0, — p)Cs" — Cy Lohgey
M sK ¢PCsv

CPG = CG/CSL; A= ;o = ‘YlCo; and & = 'YzCO(Ta - To),

(14)

the governing cquations for the transport of mass and heat through a thin
film of gel can be written into the following dimensionless forms:
Mass Transport:

O | ata-ony ?'_If] _ oy
o [e onl = For (15)
%:f (0;7') =0 (16)
—ptaraa oo O g o ey ['ﬁP exp {M} - P] (17)
o T — ¢
and
'l’(ﬂyo) = 1. (18)

Heat Transport:

6 — A[ng exp {Eg—__—;@} - P] [H + 6]

_ B gd; {s(T —6) [ ﬁ,l (o — ‘”d”][ﬁl {[1_%&_/0“]

e ot o alin]) o0

6(0) = 1.0. (20)

and
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In the above equations, £ is defined by

ag—l

j;l [az — 'P]dﬂ.

The local strain ¢, at a point initially at y, and at y at a later time ¢ is given
by

£(r) = (21)

wh=L-1=8_1 22)
Yo Mo

If the film is of finite length and width and if the edges of the film are
clamped, then the maximum bending stress omax on the film is*

(-1 (23)

Tmax =
1—u

where @ is Young’s modulus and p is Poisson’s ratio. If onax exceeds yield
stress of the film, then the film will erack. Since the strain will be the larg-
est at the gel surface, fissures would first open there; and then they would
propagate to some equilibrium plane away from the bottom of the gel. It
is worth pointing out that if the gel is an infinite eylinder, the local stresses
would be both radial and tangential. Thus, for this type of gel,*

G 1 " 4 ’ 4 ' ’ ’ ’
a:(n,7) = 1= {— - J; e (n'sr)n'dn’ + j; e(n,")n dn} (24)

and

(1 f %) {771_2 j: e(n,’)n’'dn’ + j: e(n,’7)n'dy’ — e(n,f)}. (25)

In this case, if radial or tangential stress (i.e., ¢, or ¢,) exceeds the yield
stress, the gel will rupture. The maximum values of ¢, and o, will be at
the gel surface.

on,7) =

Solution of Equations

It is obvious that the system of eqgs. (15) to (21) is not easily solvable by
standard analytical techniques. In the present study, eq. (15) coupled
with eqs. (19) and (21) was solved numerically on the computer. A
highly stable, two-step, linearized, 5-centered finite-difference technique
similar to the one proposed by Douglas® was used. In the first step, a
backward finite-difference equation was written for egs. (15), namely.

plartal—0lvi; {[\P*MH — 2y*,; + ll/*i.j—l] n [‘P*i.m - 'V"i.j—l]
An? 249

Gl T Wi A
X [6a + @ (1 — 6)] [‘IJ—%AT;&—I:]} = g2y*,; — ’l’l])/?‘r

0<i<J (26)
where JAn = 1.
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The finite difference equations for ¢, ; at j = 0 and j = J were obtained by
taking material balances on last half-slices of the film and making use of the
boundary conditions eqs. (16) and (17). The centers of these formulations
are taken at quarter-slices from each end. Thus, forj = 0,

atamd o) | 2 a
e[m+az(1 8) Wio [A—nz (‘/’*i,j — 1[’1'.0)] = Ez(l//*f,o - 4’1.0)/57 (27)

and forj = J,
(e[&x+&z(1—9)](!Ifi..l+ll/i.J—l)/2 A_i_z _ g 2?) Girs
_ (A% ng exp {E;(l:ei)} | otk a0l Hyisal2 5_2 + g Z_‘i)
X Yoy = — £ 0.75¢:, + 0.25¢; ;1) / % — 2M tP/Aq. (28)

In egs. (26) to (28), the variable ¢, ; is the value of ¢ at 7, = tArand 9; =
jAn; and the variable ¥, , is the value of ¢ at v, = A7 + Ar/2 and 4, =
JAn.

Equations (26) and (28) are the standard backward difference equations
with half-steps in the time increment (A7/2). They form a tridiagonal
matrix which can be easily solved for ¢*, ;. Once ¢*; ; are obtained, the new
values (at time r; = 1Ar + Ar/2) of dimensionless film thickness and the
film temperature, namely ¢* and 6*, arc obtained from eqgs. (21) and (19),
respectively. The integration in eq. (21) and the similar integrations in
the right-hand side of eq. (19) were carried out using Simpson’s rule of in-
tegration.®! Egquation (19) was solved for 8* by a fourth-order Runge-
Kutta method.S

With the knowledge of y*, ;, £*, and 6*, the second step for the solution of
eq. (15) was taken. The finite-difference formulation for the second step is
very similar to the first one. In this case, the full time step (A7) is taken.
For this step, the finite-difference equations similar to egs. (27) to (29) are.

ol a1 =0m 1%, {[‘MHJH — 2¥i,; + '/’i+lyj—l]
An?

Y — Yeagal| 1 v i — '/’*1,1—1]}
[ Y ] [ar + a&(l — 6%)] [_2An

= (Y1, — ¥i9)/AT 0<i<dJ (29

sl | 2
e[a1+a2(l %) y*io [A_n (\01+1,1 _ ¢i+1,o)] — 52*(¢i+1.0 _ %,o)/A‘r

forj = 0 (30)
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and

(@t aml—M)h+ensoe 2 025
e 5 £ Vit1,01
An AT

2 E(l _ 0*)} & & — g% % *,
— |— ¢&MP -— (@14 &(1 —0%) (Y¥.0+ v *,71)/2
(Ang exp{(f—o*) e

0.75

A—1> Yipr,7 = —5*2(0-75%.1 + 0-25‘//1?,.7-—1)/AT

2

- *2

At + ¢
— 2t*MP/Ay  forj =J (31)

Equations (29) to (31) once again form a tridiagonal matrix which can be
solved to obtain ¢4,,; (the values of ¢ at time 7, = (7 + 1)Ar). With the
knowledge of ¥.41,;, the value of £ and 8 at time », = ( + 1) Ar can be ob-
tained from the integrations of egs. (21) and (19), respectively.

RESULTS AND DISCUSSION

From a practical standpoint, the two parameters of most significance in
drying of a gel are the drying rate and the shrinkage of the gel as functions
of time. The conditions under which a gel will crack can be evaluated with
the knowledge of these parameters, if the data for Young’s modulus G,
Poisson’s ratio u, and the yield stress as a function of solvent concentration
are available. All the results and discussions are therefore aimed here to-
ward the behavior of drying and shrinkage rates under a variety of drying
conditions. The results will be presented in two sections. TFirst, the ef-
fects of various systems parameters on the drying and the shrinkage rates
will be analyzed with the help of numerical results generated by the com-
puter solution of the proposed theoretical model. The main objective of
this type of analysis is to assess the importance of each of the above men-
tioned dimensionless variables. Secondly, the drying rate predictions of
the present model will be compared with experimental data of isothermal
drying of lyphogel film.

Effects of System Parameters on the Drying and Shrinkage Rates

The results of drying rate can be presented in terms of a quantity F,
which is defined as

[Ib of solvent/Ib of solvent + gel],,
[Ib of solvent/lb of solvent 4 gel],—

Lo 1+ X(yt
[ XQOAL XD o,
_ 0 Xo/(1 + Xo) . (32)
L)
Thus, F(t) is numerically equal to the percentage of average initial solvent
concentration retained in the gel at time ¢.

F(t) = X 100
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Fig. 2. Drying and shrinkage rates as functions of 2.

There are 13 independent dimensionless variables, namely, P, ai, a,
H,E, T, M, A, B, Cpg, 2, &, and P. A given gel-solvent system at some
initial concentration of solvent in the gel fixes the parameters P, oy, a,
@, &, and Cpge.  Furthermore, the parameters H, A, and B mainly affect
the time dependence of temperature of the film. Thus, effects of these
parameters on drying and shrinkage rates are only indirect and in many in-
stances only of secondary importance. The dimensionless parameters M, E,
T, and P are thus of primary importance, and hence their effects on drying
and shrinkage rates are first outlined here.

The effect of P on drying rate is obvious. An increase in P should reduce
the drying and shrinkage rates, as shown in Figure 2. The value of M indi-
cates the magnitude of relative resistances of the gas and gel films during
drying. The larger the value of M, the smaller the resistance of the gas
film. For a typical set of system conditions, the effects of variations in M
on drying and shrinkage rates are illustrated in Figure 3. These results in-
dicate that for the value of M greater than approximately 100, the drying
and shrinkage rates become essentially independent of M.

The typical effects of variations in T on drying and shrinkage rates are
shown in Figure 4. Even though these effects are not as pronounced as
those described in Figure 3, they indicate that an increase in T (or decrease
in gas temperature for a given initial gel temperature) will decrease the dry-
ing rate.

A large value of E indicates a strong dependence of vapor pressure of sol-
vent on the temperature. Thus, for a given set of gas and initial film tem-
peratures, the drying and shrinkage rates should be increased with an in-
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Fig. 4. Drying and shrinkage rates as functions of T.

crease in value of E. This is illustrated in Figurce 5 for a typical set of

conditions.

For few typical system conditions, the effcets of variations in A, B, and H
on drying and shrinkage rates were also examined. These effects were
found to be very small. It should be noted that the cffects of variations in
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Fig. 5. Drying and shrinkage rates as function of E.

A, B, and H are most prominent only in the initial phase of drying when the
temperature of the gel is changing rapidly with time. During this time,
the increase in A and H and a decrease in B should increase the drying and
the shrinkage rates. Once the temperature of the gel achieves an equilib-
rium with the gas temperature, the variations in A, B, and H should have no
effect upon the drying and shrinkage rates.

For a fixed initial concentration of solvent in the gel, a variation in P in-
dicates the variation in Henry’s law constant. The effect of variation in
P on drying and shrinkage rates were obtained for a typical set of system
conditions. These results are shown in Figure 6. The results indicate
that an increase in P (or Henry’s law constant) increases the drying and
shrinkage rates; although the increment is very small for the values of P
greater than 1.

For a fixed initial solvent concentration in the gel and the fixed solvent
and gel densities, the effect of density differences between gel and the solvent
on the drying and the shrinkage rates can be examined by varying oy and
keeping all other system conditions unchanged. This effect is illustrated in
Figure 7 for a typical set of system conditions. The results indicate that an
increase in «a; (or the decrease in density difference between gel and the sol-
vent) will decrease the drying rate with a relatively little change in the
shrinkage rates.

Finally, two general points should be noted about the results shown in
Figures 2 to 7. The maximum shrinkage of the gel is determined by the
value of @z. Thus, €min —> 1 — 1/ when r - «. Secondly, the abscissa
of each of these figures is defined in terms of diffusion coefficient evaluated



616 SHAH AND PORTER

= 13.0 ———FvsT
3.45 EvsT

16.0
2.34

K]
u

~N

-0 (Y-

0.0086

0.0244
8.09
10.8

1.0

129.0
2.0 ]

20

_uOlr"II'DI@l
AR

PLRIZ

2.0 3.0
T =D exp[q+ 05T, t/L2

Fig. 6. Drying and shrinkage rates as functions of P.

1.0 T la.=z 3.451 T ]
P’ - 0472 T Tiwes
il - EvsT
1 T =160
os M A= 234 7]
l\\ 8 = 0.0086
\ % = 100 P = 00244
[ 1 & =100.0 H = 8.09
¢ 0.6 A E =108 ]
S o\ Cpgs !0
y \ M =129.0
\ \ a = 20
o4l \ a,= 20 7]
‘A
\
W
o2 (Y .
W\
NN
NN
S~ -
o | T~—_=l:=::=|::===,::::‘_'
o} LO 2.0 3.0

T=Dexp[q+ o.562]f/L%

Fig. 7. Drying and shrinkage rates as functions of a;.

at the approximately arithmetic averages of initial and final temperatures
and concentrations. This type of absecissa coordinate was chosen to indi-
cate that time required for approximate leveling of drying and shrinkage
rates is related to & and &, through only 7.
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Comparison of Theoretical Predictions with Experimental Measurements

In order to verify the validity of the theoretical model, some measure-
ments on drying of Lyphogel film were carried out. Lyphogel is a polymeric
gel supplied by Gelman Instrument Company, Ann Arbor, Michigan. This
gel is extremely hygroscopie, and in the swollen state it carries water approx-
imately five times its weight. Unfortunately, even though it dries and
shrinks considerably, it also cracks up very easily, thereby making the mea-
surements of drying and shrinkage rates rather difficult and inaccurate.
In the present study, the measurements of drying and shrinkage rates on
this film were carried out only under very mild conditions of drying where
no severe eracking was observed for a long period of time.

The experimental results were obtained for isothermal and natural con-
vection condition (at room temperature of approximately 75°F) in a con-
stant-humidity chamber. Three humidity values, namely, 65% R.H., 73%,
R.H., and 859, R.H., were examined. Various film thicknesses were ex-
amined. The other two dimensions of the film were approximately 4 in. by
4 in. The results of this study are summarized in Figure 8. Since there
are no data available for diffusion coefficient as a function of concentration
and Henry’s law constant, the theoretical model is not directly applicable
to the evaluation of these results. However, as illustrated in Figure 2, the
results of Figure 8 also indicate that initial drying rate is approximately a

-t O
" I:]
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HF 0 65%RH
214 O 73%RH —
i i A 85%RH
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28 s THICKNESS =0 To75F
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Fig. 8. Drying and shrinkage rates of Lyphogel. Isothermal dryingin natural convection
conditions.
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logarithmic funection of gas-phase humidity. Furthermore, the nature of
the experimental drying and shrinkage rates plots are qualitatively very
similar to the theoretical plots shown in Figures 2 and 7. The similar re-
sults were obtained at other film thicknesses. Attempts were also made to
measure the drying and shrinkage rates at higher temperatures and under
forced convection conditions. The latter measurcments were carried out
in a tray dryer. The preliminary data showed that, as predicted by the
model, an increase in gas temperature as well as air flow rate increases the
drying and shrinkage rates. However, due to severe cracking of the gel in
early stages of drying, these measurements are believed to be of only quali-
tative significance, and their quantitative values will not be reported here.

CONCLUSIONS

It is concluded from the present study that

1. The drying and shrinkage rates will be essentially independent of air
flow rate and Henry’s law constant as long as dimensionless quantities M
and P are greater than approximately 100 and 10, respectively. Except
under extreme temperature conditions the drying and shrinkage rates are
most influenced by the dimensionless groups M, P, andd P defined in this
paper.

2. The effect of concentration and temperature dependence of diffusion
coefficient upon the time required for approximate leveling of drying and
shrinkage rates can be approximately handled by defining a dimensionless
time variable 7 in terms of average diffusion coefficient, as shown in Figures
2t07.

3. The predictions of the theoretical model are in qualitative agreement
with the experimental data on isothermal drying of Lyphogel film under nat-
ural convection conditions.
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